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ABSTRACTS 
Objective: This review aims to evaluate whether stem cell therapy is a miracle cure or hype The analysis 
will include the proliferation, differentiation, problems, developments and applications of stem cells in a 
sequential manner.  
Study Design: Analytical 
Subjects and Methods: This review uses a dialectical approach to objectively assess the therapeutic 
potential of stem cells. The physico-chemical interactions that underpin the generation, maintenance and 
differentiation of stem cells are studied. Associated problems and developments in stem cell therapy are 
compared to understand its current and future applications. 
Results and Conclusion: This article suggests that stem cell therapy will be ultimately beneficial. 
However, it is premature to give a timeline. While it certainly has great potential, the difficulties of practical 
application must be overcome before it can be called a miracle cure. 
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INTRODUCTION 
Stem cell therapy has been idealised as a cure for 
everything.1Many potential beneficiaries have been 
taken in by this, only to have their hopes dashed 
later.2The hype has made some people sceptical 
and suspicious of the media.2A sizeable population 
objects to embryo based research on ethical 
grounds.3 
 Scientists have a cautious approach and focus 
more on research.4The aim of current research is 
to separate the hype from hope, and define the 
abilities and limitations of stem cell therapy. 
Physicians understand that the process of taking 
cellular therapy from the laboratory to the clinic is 
long. However, there is hope that stem cell therapy 
will lead to exciting new possibilities in healthcare. 
 Stem cells have the definitive properties of self 
renewal and potency.5Self renewal is the ability to 
divide repeatedly resulting in a clone of 
cells.5Potency is the capacity to differentiate into 
multiple lineages of more specialised cells.5 
 Stem cells may be totipotent, pleuripotent, 
multipotent, oligopotent or unipotent each with 
decreasing differentiation potential.5Cells with 
higher potencies can generate a greater diversity 
of tissues. More specialised cells have less 
potency and self renewing ability. 
 Much research is dedicated to culturing stem 
cells with the aim of producing large colonies of 
pleuripotent cell lines. This would ensure a 
continuous supply of stem cells for further research 
and therapeutic uses. 

METHODOLOGY 
Traditionally, stem cells have been cultured on a 
serum medium containing mouse embryonic 
fibroblasts (MEFs).6-7MEFs provide growth factors 
that cause the expression of transcription factors, 
such as Oct-4, Sox-2 and Nanog.8These act in 
concert to promote growth and proliferation of stem 
cells. Oct-4, Sox-2 and Nanog are markers for 
pleuripotency.9-10 
 
Figure 1: The signalling pathways that cause the 
expression of self renewal genes and the 
transcription regulatory network.11Adapted from 
(11). 
 
LIF/gp130/JAK/STAT 
Leukaemia Inhibitory Factor maintains 
pleuripotency by inhibiting signals that induce 
differentiation, accelerating the cell cycle and 
maintaining the expression of self renewing 
genes.12 

 
WNT signalling 
WNT protein regulates the maintenance of 
embryonic stem cells through the WNT/β-catenin 
pathway by maintaining pleuripotency factors 
including Oct-4, ID and STAT3.12-13 
 
Transcription Regulatory Network Oct-4 levels 
must be maintained at a critical range for self 
renewal.17Regulatory regions of Oct-4 and Sox-2 
have binding sites, termed HMG/POU 
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cassettes.18These sites are also found on the 
promoters of target genes and Nanog. Oct-4 and 
Sox-2 can thus regulate the transcriptional activity 
of target genes as well as each other.18They form 
a core regulatory network with Nanog.19 
 
TGFβ/activin/nodal signalling 
Transforming Growth Factor β 
(TGFβ)/activin/nodal pathway is a critical pathway 
in the self renewal of human embryonic stem 
cells.15It also blocks differentiation of the neuro-
ectoderm line by causing expression of Nanog.16 
 
FGF signalling 
Fibroblast Growth Factor is necessary to maintain 
the pleuripotent state. FGF-2 allows formation of 
compact colonies that are less prone to peripheral 
differentiation via the Ras-Raf-MAPK signalling 
cascade/P13K-AKt cell survival pathway.14 
 Feeder cultures potentially expose human cells 
to chemicals, pathogens and prions making them 
unsuitable for therapeutic use.20Human embryonic 
stem cells (hESCs) have been grown in a feeder 
free environment using high concentrations of 
FGF-2.21This also resulted in a twofold increase in 
hESC expansion compared to an MEF culture.21A 
cocktail of factors including FGF-2, Wnt3A, April, 
insulin, transferring, albumin and cholesterol has 
also been used to grow hESCs.22 
 Specialised cell lines are derived from the 
differentiation of pleuripotent ESCs. In vitro 
differentiation results in a mixture of different cell 
lines.23Isolating pure cell lines requires the addition 
of specific growth factors and differentiation 
inducing agents which cause the transcription of 
lineage specific genes.24Understanding these 
pathways is crucial to direct the differentiation of 
particular tissues. 
 Mesenchymal stem cells are multipotent 
progenitors found in many tissues such as bone 
marrow, subcutaneous fat, muscle, periosteum 
and umbilical cord blood.25Their differentiation into 
cells of mesodermal origin offers a potential cure 
for many degenerative connective tissue diseases. 
The advantages (listed below) of MSCs come 
without the ethical drawbacks associated with 
ESCs. This has kindled hope of widespread use in 
the future. Current MSC research is geared 
towards engineering and transplanting various 
connective tissues including cartilage, bone and 
muscle.26 Advantages of MSCs 
1. Widespread location and ability to proliferate 

extensively (shown to have 40 doublings 

before self renewal stops) makes them suitable 
for in vitro expansion and tissue engineering.27-

28 
2. Immune modulatory properties which decrease 

the probability of graft rejection allowing them 
to be transplanted easily.29 

3. Inhibit immune responses against minor 
histocompatibility antigens such as HY and 
prevent graft versus host disease when co-
transplanted with haematopoietic stem cells.30 

4. Transfecting MSCs with tumour suppressor 
genes such as interferon beta has been shown 
to decrease cancer development in vivo.30 

5. MSC transplantation is associated with 
decreased incidence and improved clinical 
features in autoimmune encephalomyelitis.31 

 Chondrocytes have been generated from bone 
marrow derived stem cells in cultures, including 
agarose, alginate, poly (ethylene glycol) and 
silk.33Sox9 transcription factor is the primary 
mediator in the expression of cartilage specific 
genes.34Cell proliferation increases in hypoxic 
conditions35 and with application of shear 
stresses.36These stresses are provided by 
hydrodynamic bioreactors to increase biochemical 
content.37The cartilage engineered does not 
hypertrophy and is suitable for therapeutic 
use.38Scaffolds specific for chondrogenesis are 
being developed. 
 Neuronal degeneration has long been 
considered irreversible as highly specialized cells 
do not divide. Regeneration of neural tissue by 
stem cells provides hope that Parkinson’s disease 
and demyelinating disorders can be treated in the 
future. An understanding of neuronal differentiation 
is necessary to gauge progress in this area. 
 ESCs enter the neural line as a heterogeneous 
mixture of cells.39To achieve homogeneity a 
monolayer culture was developed using a defined 
media.39FGF and Notch signalling, along with 
inhibition of BMP signalling, push the cells into the 
neural progenitor stage.40Addition of FGF8 and 
Sonic Hedgehog promote differentiation into 
dopaminergic (DA) neurons.41Nurr1, together with 
other transcription factors expressed by DA 
neurons, promotes functional maturity.42 
 There is greater DA neuronal differential when 
stem are grown as spherical neural masses 
(SNMs). SNMs can be stored for a long time 
without losing their differentiation 
capacity.43Differentiation into DA neurons only 
takes 14 days and does not require feeder 
layers.43A high yield (66% purity - highest ever 
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recorded) of DA neurons is obtained.43This is an 
important milestone for DA neuron generation. It 
sets the foundation for the application of DA 
neuron transplantation therapy on a large scale in 
a clinical setting. 
 Most of the data on stem cells has come from 
culturing mESCs. The difference in species raises 
questions about the validity of the 
data.44 Moreover; hESCs divide more slowly than 
mESCs making their expansion in culture more 
difficult.44Prolonged cultures are required to obtain 
large colonies of stem cells. This can result in 
karyotypic abnormalities.45Feeder free cultures 
minimize these risks. However, cultures suitable 
for therapeutic use are currently some years away. 
 In vitro differentiation results in a 
heterogeneous mixture of different cell lines.46The 
concentration of the desired cell line is so small 
that transplantation is not feasible. More efficient 
cultures require exact replication of the internal 
environment. In practice, this is exceedingly 
difficult and 100% efficiency may never be 
achieved. 
 Non-autologous stem cell transplants may 
result in tissue rejection.47Continuous use of 
immuno-suppressant drugs to counter this will 
leave the patient susceptible to infections. The 
immune-regulatory properties of MSCs could 
provide a solution to this problem.47 
 Transplanted hESC and mESC have been 
shown to form teratomas in immuno-deficient 
mice.48The link between stem cells and tumour 
formation is frighteningly strong. Many stem cell 
markers such Oct-4, Sox-2 and Nanog have been 
associated with tumourigenesis while c-myc and 
klf-4 are established proto-oncogenes.49The myc 
family of proto-oncogenes is in fact associated with 
many tumours and its target genes are co-
expressed in both ESC and malignant tumours.49 
 In vitro differentiation aims to regenerate a 
specific tissue that can then be grafted. This 
approach can only cure single tissue diseases. 
Many diseases affect several tissues at once. 
Generating multiple cell types in vitro has proved 
to be challenging. Allowing stem cells to 
differentiate in vivo is also difficult in most cases. 
Stem cell therapy therefore shows more potential 
in cases of site specific tissue damage.50 
 Stem cell research is ethically controversial 
and generates many viewpoints. Social opinion 
influences laws and state funding policies 
regarding further research. Much of the 
controversy revolves around procurement of 

hESCs leading to ethical arguments similar to the 
abortion debate.  
 Similarly, therapeutic cloning is thought by 
many as devaluing human life and leads to the 
ethical dilemma of human cloning. There is a 
consensus against reproductive cloning. However, 
therapeutic cloning remains ambiguous with 
different countries adopting different policies 
towards it.52 
 Stem cell research has recently received an 
impetus from various innovative techniques. 
Progress is continuously being made as 
researchers strive to make stem cell therapies 
safer and more efficient. These techniques and 
their limitations are outlined below. 
 SCNT is a method that produces cloned 
embryos from which cell lines containing the 
recipient’s DNA can be derived. The nucleus of a 
somatic cell is extracted and used to displace the 
nucleus of the donated egg cell.53Epigenetic 
reprogramming back to an undifferentiated state 
occurs due to chemical factors in the egg cell 
cytoplasm.53The egg is then stimulated to divide 
until it forms an embryo containing pleuripotent 
cells that are genetically identical to the donor. 
These cells can then be cultured and differentiated 
into various organs and tissues. 
 The production of induced pleuripotent stem 
cells was hailed as Sciences ‘breakthrough of the 
year’ in 2008.56These cells are derived from adult 
somatic cells through a process of 
dedifferentiation. This is a reversal of the cellular 
clock in which a more specialised cell returns to its 
stem-like nature. In 2006, iPSCs were first 
produced by transfecting mouse fibroblasts with 
known stem cell markers. The expression of four 
key transcription factors, Oct-4, Sox-2, c-myc and 
Klf4, induced pleuripotency.57In 2007, iPSCs were 
generated from adult human fibroblasts with the 
transduction of the same four transcription 
factors.58Expression of these transcription factors 
at an optimal ratio of 3:1:1:1 increases the 
efficiency ofproducing iPSCs.59Other combinations 
of transcription factors (Oct-4, Sox-2, Nanog and 
Lin28) have also been transduced to generate 
iPSCs.60These cells express similar markers to 
hESCs and have been differentiated into functional 
neurons61, glial cells61and cardiomyocytes.62-63 
 Stem cell research has become increasingly 
dependent on biotechnology. DNA chip technology 
allows researchers to simultaneously analyse 
thousands of genes.67Machine vision technology 
generates images of cells and automates culturing, 
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monitoring and analysis of embryonic 
cells.68Tissue engineering has advanced with the 
production of improved scaffolds which support 
three dimensional tissue production.69Establishing 
bioreactors capable of supporting efficient 
proliferation and differentiation will be a massive 
step for the large scale application of cellular 
therapy. 
 

DISCUSSION 
The many potential and practical applications of 
stem cell therapy are discussed below in the light 
of some common diseases to better evaluate its 
future role. 
 Haematopoietic stem cell transplantation 
(HSCT) has been used for years to treat 
leukaemias and lymphomas. Both malignant and 
normal cells are destroyed by chemotherapy and 
replaced with transplanted stem cells that 
differentiate into functional cells in 
vivo.70Traditionally the bone marrow is used as a 
source of stem cells. The use of peripheral blood is 
increasing as it provides a bigger graft.71There is 
interest in storing and utilising umbilical cord blood 
since there is decreased risk of graft versus host 
disease but the quantities obtained are small.72It is 
a potential therapy for type 1 DM and 
cardiovascular disease with encouraging results in 
clinical trials and animal models.73 
 In vitro production of dopaminergic (DA) 
neurons can replace the dead neurons in the 
midbrain. Transplanted DA neurons have shown 
statistically significant loco-motor functional 
recovery in hemi-parkinsonian rats.74Motor 
improvement was also seen after transplantation of 
mesencephalic progenitors (CSM14.1 cells).75 
 Demyelination is the primary pathology in 
multiple sclerosis, leukodystrophies and spinal 
cord injuries. Oligodendrocytes can be 
differentiated in culture from pleuripotent stem 
cells76and forebrain sub-ventricular zone 
progenitor cells can differentiate into 
astrocytes77 upon transplantation. Transplantation 
of these cells has promoted functional recovery in 
rats.78-79Transplanting neural stem cells 
transduced with the Olig2 transcription factor 
enhances myelination in the white matter and 
improves locomotion in rats.80However, cellular 
therapy has limited potential in multiple sclerosis 
because axon regeneration is required at several 
sites. Disorders with localized myelin sheath 
damage such as optic neuritis will be easier to 
treat. 

 Osteoarthritis affects an estimated 8.5 million 
people in the UK.81The pathology involves articular 
cartilage destruction. MSCs can migrate to injured 
sites and undergo site specific differentiation to 
regenerate articular cartilage.82Their immune 
modulatory properties also reduce inflammation 
and ease pain in immune mediated diseases like 
rheumatoid arthritis. MSC transplantation has been 
shown to stimulate regeneration of the medial 
meniscus and decrease joint degeneration in a 
goat.82Osteochondral progenitor cells have been 
used to repair full-thickness defects in the articular 
cartilage in the knees of rabbits.83In vitro cartilage 
engineering is also a potential therapeutic 
approach in which cartilage tissue is generated 
and engrafted into the joint cavity.84 
 Type 1 diabetes is an insulin deficiency 
resulting from autoimmune mediated destruction of 
insulin-producing β-cells in the pancreatic islets. 
Immunosuppression with HSCT has been shown 
to improve clinical features of early type 1 DM in 
humans. 23 patients became insulin independent 
for more than a month.85Human cord blood stem 
cells differentiate into islets when transplanted in 
Type 1 DM mice and improve hyperglycaemia in 
obesity induced diabetic mice.86Splenic 
mesenchymal cells have also been shown to 
differentiate into β-cells in rodents and reverse 
diabetes.87They can also keep islet destruction in 
check due to their immune regulatory properties. 
 

CONCLUSION 
Applications in regenerative medicine require the 
development of safer and more efficient cultures, 
increased use of biotechnology, more clinical trials 
and increased investment. Above all, it requires 
time, so one should not expect immediate benefits. 
However, stem cells do have immediate uses in 
drug discovery, toxicology, functional genomics 
and basic cancer research so they may still 
contribute to cures in an indirect manner. Stem cell 
research has followed a dialectical paradigm. New 
developments have been met with new problems. 
Whether stem cell therapy is a miracle cure or not 
is debatable. However, it is certainly not hype. 
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